Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Adv Biol Regul ; 91: 101010, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135565

RESUMO

Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.


Assuntos
Ceramidas , Serina C-Palmitoiltransferase , Animais , Humanos , Ceramidas/genética , Ceramidas/metabolismo , Microscopia Crioeletrônica , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina
2.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541526

RESUMO

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Assuntos
Adenoma , Ceramidas , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Ácidos Graxos , Esfingolipídeos/metabolismo , Serina C-Palmitoiltransferase/metabolismo
3.
EMBO Rep ; 24(1): e54689, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36408842

RESUMO

Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Esfingolipídeos , Animais , Humanos , Esfingolipídeos/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Proteínas de Membrana/metabolismo , Homeostase , Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
4.
Sci Rep ; 12(1): 16740, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202842

RESUMO

Hyperlipidemia is considered as one of the major systemic factors associated with the development of diabetic retinopathy, and animal models have documented that its presence in a hyperglycemic environment exacerbates cytosolic ROS production (via activation of the Rac1-Nox2 axis) and mitochondrial damage. Hyperglycemia also accelerates Rac1 transcription via dynamic DNA methylation-hydroxymethylation of its promoter. In diabetes, ceramide metabolism in the retina is impaired and its accumulation is increased. Our aim was to investigate the effect of inhibition of the rate limiting enzyme of the de novo ceramide biosynthesis, serine palmitoyl-transferase (SPT), on Rac1 activation in diabetic retinopathy. Using human retinal endothelial cells, transfected with SPT-siRNA, and incubated in 20 mM D-glucose in the presence or absence of 50 µM palmitate (glucolipotoxic and glucotoxic, respectively), activities of Rac1 and Nox2, and ROS levels were quantified. For Rac1 transcriptional activation, 5 hydroxymethyl cytosine (5hmC) levels at its promoter were quantified. Key parameters were confirmed in retinal microvessels from streptozotocin-induced diabetic mice on a normal diet (type 1 diabetic model) or on a high-fat diet (45% kcal, type 2 diabetic model), injected intravitreally with SPT-siRNA. Compared to normal glucose, cells in high glucose, with or without palmitic acid, had increased Rac1-Nox2-ROS signaling, Rac1 transcripts and 5hmC levels at its promoter. Inhibition of SPT by SPT-siRNA or myriocin prevented glucotoxic- and glucolipotoxic-induced increase in Rac1-Nox2-ROS signaling and 5hmC at the Rac1 promoter. Similarly, in both type 1 and type 2 diabetic mouse models, SPT-siRNA attenuated the increase in the Rac1-Nox2-ROS axis and 5hmC at the Rac1 promoter. Thus, inhibition of the rate limiting enzyme of ceramide de novo biosynthesis, SPT, regulates activation of DNA methylation-hydroxymethylation machinery and prevents increased Rac1 transcription. This ameliorates the activation of Rac1-Nox2 signaling and protects the mitochondria from damaging cytosolic ROS, which prevents accelerated capillary cell loss. These results further raise the importance of regulating lipid levels in diabetic patients with dyslipidemia.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Animais , Ceramidas/metabolismo , Citosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Camundongos , NADPH Oxidase 2/metabolismo , Palmitatos/farmacologia , Ácido Palmítico/farmacologia , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/farmacologia , Estreptozocina/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
J Lipid Res ; 63(10): 100281, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36115594

RESUMO

Serine palmitoyltransferase (SPT) predominantly incorporates serine and fatty acyl-CoAs into diverse sphingolipids (SLs) that serve as structural components of membranes and signaling molecules within or amongst cells. However, SPT also uses alanine as a substrate in the contexts of low serine availability, alanine accumulation, or disease-causing mutations in hereditary sensory neuropathy type I, resulting in the synthesis and accumulation of 1-deoxysphingolipids (deoxySLs). These species promote cytotoxicity in neurons and impact diverse cellular phenotypes, including suppression of anchorage-independent cancer cell growth. While altered serine and alanine levels can promote 1-deoxySL synthesis, they impact numerous other metabolic pathways important for cancer cells. Here, we combined isotope tracing, quantitative metabolomics, and functional studies to better understand the mechanistic drivers of 1-deoxySL toxicity in cancer cells. We determined that both alanine treatment and SPTLC1C133W expression induce 1-deoxy(dihydro)ceramide synthesis and accumulation but fail to broadly impact intermediary metabolism, abundances of other lipids, or growth of adherent cells. However, we found that spheroid culture and soft agar colony formation were compromised when endogenous 1-deoxySL synthesis was induced via SPTLC1C133W expression. Consistent with these impacts on anchorage-independent cell growth, we observed that 1-deoxySL synthesis reduced plasma membrane endocytosis. These results highlight a potential role for SPT promiscuity in linking altered amino acid metabolism to plasma membrane endocytosis.


Assuntos
Neoplasias , Serina C-Palmitoiltransferase , Serina C-Palmitoiltransferase/metabolismo , Ágar/metabolismo , Esfingolipídeos/metabolismo , Serina/química , Ceramidas/metabolismo , Alanina/metabolismo , Membrana Celular/metabolismo , Redes e Vias Metabólicas , Endocitose , Neoplasias/metabolismo
6.
Cell Rep ; 40(13): 111415, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170811

RESUMO

Sphingolipids play important signaling and structural roles in cells. Here, we find that during de novo sphingolipid biosynthesis, a toxic metabolite is formed with critical implications for cancer cell survival. The enzyme catalyzing the first step in this pathway, serine palmitoyltransferase complex (SPT), is upregulated in breast and other cancers. SPT is dispensable for cancer cell proliferation, as sphingolipids can be salvaged from the environment. However, SPT activity introduces a liability as its product, 3-ketodihydrosphingosine (3KDS), is toxic and requires clearance via the downstream enzyme 3-ketodihydrosphingosine reductase (KDSR). In cancer cells, but not normal cells, targeting KDSR induces toxic 3KDS accumulation leading to endoplasmic reticulum (ER) dysfunction and loss of proteostasis. Furthermore, the antitumor effect of KDSR disruption can be enhanced by increasing metabolic input (via high-fat diet) to allow greater 3KDS production. Thus, de novo sphingolipid biosynthesis entails a detoxification requirement in cancer cells that can be therapeutically exploited.


Assuntos
Neoplasias , Serina C-Palmitoiltransferase , Lipogênese , Oxirredutases/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados
7.
Microbiol Spectr ; 10(5): e0133122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121228

RESUMO

Serine palmitoyltransferase catalyzes the first step of the sphingolipid biosynthesis. Recently, sphingolipid homeostasis has been connected to several human diseases, making serine palmitoyltransferases an interesting therapeutic target. Known and efficient serine palmitoyltransferase-inhibitors are sphingofungins, a group of natural products isolated from fungi. To further characterize newly isolated sphingofungins, we designed an easy to use colorimetric serine palmitoyltransferase activity assay using FadD, which can be performed in 96-well plates. Because sphingofungins exert antifungal activitiy as well, we compared the in vitro assay results with an in vivo growth assay using Saccharomyces cerevisiae. The reported experiments showed differences among the assayed sphingofungins, highlighting an increase of activity based on the saturation levels of the polyketide tail. IMPORTANCE Targeting the cellular sphingolipid metabolism is often discussed as a potential approach to treat associated human diseases such as cancer and Alzheimer's disease. Alternatively, it is also a possible target for the development of antifungal compounds, which are direly needed. A central role is played by the serine palmitoyltransferase, which catalyzes the initial and rate limiting step of sphingolipid de novo synthesis and, as such, the development of inhibitory compounds for this enzyme is of interest. Our work here established an alternative approach for determining the activity of serine palmitoyltransferase adding another tool for the validation of its inhibition. We also determined the effect of different modifications to sphingofungins on their inhibitory activity against serine palmitoyltransferase, revealing important differences on said activity against enzymes of bacterial and fungal origin.


Assuntos
Produtos Biológicos , Policetídeos , Humanos , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/farmacologia , Antifúngicos/farmacologia , Policetídeos/farmacologia , Aciltransferases/metabolismo , Aciltransferases/farmacologia , Saccharomyces cerevisiae , Esfingolipídeos/farmacologia , Serina/farmacologia
8.
Adv Exp Med Biol ; 1372: 31-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35503172

RESUMO

Atherosclerosis is the formation of fibrofatty lesions in the arterial wall, and this inflammatory state of the artery is the main cause of advanced pathological processes, including myocardial infarction and stroke. Dyslipidemic conditions with excess cholesterol accumulate within the arterial vessel wall and initiate atherogenic processes. Following vascular reaction and lipid accumulation, the vascular wall gradually thickens. Together with the occurrence of local inflammation, early atherosclerotic lesions lead to advanced pathophysiological events, plaque rupture, and thrombosis. Ceramide and sphingomyelin have emerged as major risk factors for atherosclerosis and coronary artery disease. Currently, the clinical association between de novo sphingolipid biosynthesis and coronary artery disease has been established. Furthermore, therapeutic strategies to modulate this pathway, especially those involving serine palmitoyltransferase and sphingomyelin synthase, against atherosclerosis, cancer, type 2 diabetes, and non-alcoholic fatty liver disease are actively under development. In this chapter, we focus on the relationship between de novo sphingolipid biosynthesis and coronary artery disease.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Aterosclerose/metabolismo , Humanos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos
9.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974911

RESUMO

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Assuntos
Chaetomium , Proteínas Fúngicas , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferase , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismo
10.
J Biol Chem ; 296: 100491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662400

RESUMO

Serine palmitoyltransferase complex (SPT) mediates the first and rate-limiting step in the de novo sphingolipid biosynthetic pathway. The larger subunits SPTLC1 and SPTLC2/SPTLC3 together form the catalytic core while a smaller third subunit either SSSPTA or SSSPTB has been shown to increase the catalytic efficiency and provide substrate specificity for the fatty acyl-CoA substrates. The in vivo biological significance of these smaller subunits in mammals is still unknown. Here, using two null mutants, a conditional null for ssSPTa and a null mutant for ssSPTb, we show that SSSPTA is essential for embryogenesis and mediates much of the known functions of the SPT complex in mammalian hematopoiesis. The ssSPTa null mutants are embryonic lethal at E6.5 much like the Sptlc1 and Sptlc2 null alleles. Mx1-Cre induced deletion of ssSPTa leads to lethality and myelopoietic defect. Chimeric and competitive bone marrow transplantation experiments show that the defect in myelopoiesis is accompanied by an expansion of the Lin-Sca1+c-Kit+ stem and progenitor compartment. Progenitor cells that fail to differentiate along the myeloid lineage display evidence of endoplasmic reticulum stress. On the other hand, ssSPTb null mice are homozygous viable, and analyses of the bone marrow cells show no significant difference in the proliferation and differentiation of the adult hematopoietic compartment. SPTLC1 is an obligatory subunit for the SPT function, and because Sptlc1-/- and ssSPTa-/- mice display similar defects during development and hematopoiesis, we conclude that an SPT complex that includes SSSPTA mediates much of its developmental and hematopoietic functions in a mammalian model.


Assuntos
Acil Coenzima A/metabolismo , Células da Medula Óssea/citologia , Hematopoese/fisiologia , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/biossíntese , Animais , Células da Medula Óssea/metabolismo , Domínio Catalítico , Diferenciação Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serina C-Palmitoiltransferase/metabolismo , Especificidade por Substrato
11.
Hepatology ; 73(2): 692-712, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32374916

RESUMO

BACKGROUND AND AIMS: The wide prevalence of chemoresistance and compromised early diagnosis of gallbladder cancer (GBC) has led to poor patient prognosis, requiring sustained efforts for the identification of effective biomarkers and therapeutic intervention. Ceramides have emerged as intracellular signaling molecules linked to tumorigenesis and therapeutic response in cancers. However, the clinical relevance of ceramides with GBC has not been investigated. APPROACH AND RESULTS: In the present study, we revealed aberrant gene expressions (e.g., serine palmitoyltransferase 1 [SPTLC1] and ceramide synthase 2 [CERS2]) of de novo ceramide biosynthesis and length-specific ceramide production in GBC tissues. Analyses of serum ceramide pattern in healthy controls, gallbladder stone, and GBC patients identified C24-Ceramide as a potential diagnostic biomarker for patients with GBC. Importantly, elevation of SPTLC1, CERS2, and its product, C24-Ceramide, was associated with tumor staging, distal metastasis, and worse prognosis. In line with this, C24 -Ceramide promoted GBC cell proliferation and migration in vitro and in vivo. Mechanistically, C24-Ceramide directly bound to phosphatidylinositol 5-phosphate 4-kinase type-2 gamma (PIP4K2C), a regulator of mammalian target of rapamycin (mTOR), to facilitate mTOR complex formation and activation. C6-Ceramide, an analogue of natural ceramide, competed with C24-Ceramide for PIP4K2C binding, thereby abrogating C24-Ceramide-mediated mTOR signaling activation and oncogenic activity. Furthermore, stimulation with C6-Ceramide significantly suppressed the proliferative and metastatic capacity of GBC cells in vitro and in vivo, which was dependent on PIP4K2C. CONCLUSIONS: Our findings highlight the clinical relevance of ceramide metabolism with GBC progression and identify C24-Ceramide as a diagnostic biomarker for GBC. We propose that PIP4K2C is indispensable for C6-Ceramide as a potential therapeutic intervention for GBC through a direct competition with C24-Ceramide.


Assuntos
Biomarcadores Tumorais/metabolismo , Ceramidas/metabolismo , Neoplasias da Vesícula Biliar/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Feminino , Vesícula Biliar/patologia , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/mortalidade , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Estadiamento de Neoplasias , Prognóstico , Serina C-Palmitoiltransferase/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nature ; 586(7831): 790-795, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788725

RESUMO

Serine, glycine and other nonessential amino acids are critical for tumour progression, and strategies to limit their availability are emerging as potential therapies for cancer1-3. However, the molecular mechanisms driving this response remain unclear and the effects on lipid metabolism are relatively unexplored. Serine palmitoyltransferase (SPT) catalyses the de novo biosynthesis of sphingolipids but also produces noncanonical 1-deoxysphingolipids when using alanine as a substrate4,5. Deoxysphingolipids accumulate in the context of mutations in SPTLC1 or SPTLC26,7-or in conditions of low serine availability8,9-to drive neuropathy, and deoxysphinganine has previously been investigated as an anti-cancer agent10. Here we exploit amino acid metabolism and the promiscuity of SPT to modulate the endogenous synthesis of toxic deoxysphingolipids and slow tumour progression. Anchorage-independent growth reprogrammes a metabolic network involving serine, alanine and pyruvate that drives the endogenous synthesis and accumulation of deoxysphingolipids. Targeting the mitochondrial pyruvate carrier promotes alanine oxidation to mitigate deoxysphingolipid synthesis and improve spheroid growth, similar to phenotypes observed with the direct inhibition of SPT or ceramide synthesis. Restriction of dietary serine and glycine potently induces the accumulation of deoxysphingolipids while decreasing tumour growth in xenograft models in mice. Pharmacological inhibition of SPT rescues xenograft growth in mice fed diets restricted in serine and glycine, and the reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to the accumulation of deoxysphingolipids and mitigates tumour growth. The promiscuity of SPT therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which further sensitizes tumours to metabolic stress.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Serina/deficiência , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Alanina/biossíntese , Alanina/metabolismo , Alanina/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Dieta , Feminino , Glicina/biossíntese , Glicina/deficiência , Glicina/metabolismo , Glicina/farmacologia , Células HCT116 , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Fosfoglicerato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Serina/sangue , Serina/farmacologia , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Esferoides Celulares/patologia , Esfingolipídeos/biossíntese , Estresse Fisiológico/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Commun ; 11(1): 2471, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424203

RESUMO

Gut microbes are linked to host metabolism, but specific mechanisms remain to be uncovered. Ceramides, a type of sphingolipid (SL), have been implicated in the development of a range of metabolic disorders from insulin resistance (IR) to hepatic steatosis. SLs are obtained from the diet and generated by de novo synthesis in mammalian tissues. Another potential, but unexplored, source of mammalian SLs is production by Bacteroidetes, the dominant phylum of the gut microbiome. Genomes of Bacteroides spp. and their relatives encode serine palmitoyltransfease (SPT), allowing them to produce SLs. Here, we explore the contribution of SL-production by gut Bacteroides to host SL homeostasis. In human cell culture, bacterial SLs are processed by host SL-metabolic pathways. In mouse models, Bacteroides-derived lipids transfer to host epithelial tissue and the hepatic portal vein. Administration of B. thetaiotaomicron to mice, but not an SPT-deficient strain, reduces de novo SL production and increases liver ceramides. These results indicate that gut-derived bacterial SLs affect host lipid metabolism.


Assuntos
Bacteroides/fisiologia , Ceramidas/metabolismo , Microbioma Gastrointestinal , Redes e Vias Metabólicas , Esfingolipídeos/metabolismo , Animais , Células CACO-2 , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Vida Livre de Germes , Humanos , Resistência à Insulina , Mucosa Intestinal/microbiologia , Fígado/metabolismo , Redes e Vias Metabólicas/genética , Camundongos , Mutação/genética , Serina C-Palmitoiltransferase/deficiência , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo
14.
Cell Chem Biol ; 27(5): 586-597.e12, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32330443

RESUMO

In this study, we identify the natural product gambogic acid as well as structurally related synthetic xanthones as first-in-class covalent inhibitors of the de novo sphingolipid biosynthesis. We apply chemoproteomics to determine that gambogic acid binds to the regulatory small subunit B of the serine palmitoyltransferase complex (SPTSSB). We then test structurally related synthetic xanthones to identify 18 as an equally potent but more selective binder of SPTSSB and show that 18 reduces sphingolipid levels in situ and in vivo. Finally, using various biological methods, we demonstrate that 18 induces cellular responses characteristic for diminished sphingosine-1-phosphate (S1P) signaling. This study demonstrates that SPTSSB may become a viable therapeutic target in various diseases with pathological S1P signaling. Furthermore, we believe that our compound will become a valuable tool for studying the sphingolipid metabolism and serve as a blueprint for the development of a new generation of sphingolipid biosynthesis inhibitors.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Serina C-Palmitoiltransferase/antagonistas & inibidores , Xantonas/química , Xantonas/farmacologia , Animais , Descoberta de Drogas , Células HEK293 , Humanos , Lisofosfolipídeos/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos ICR , Proteômica , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
15.
Am J Respir Cell Mol Biol ; 62(6): 783-792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32078788

RESUMO

Polymorphism at the 17q21 gene locus and wheezing responses to rhinovirus (RV) early in childhood conspire to increase the risk of developing asthma. However, the mechanisms mediating this gene-environment interaction remain unclear. In this study, we investigated the impact of one of the 17q21-encoded genes, ORMDL3 (orosomucoid-like 3), on RV replication in human epithelial cells. ORMDL3 knockdown inhibited RV-A16 replication in HeLa, BEAS-2B, A549, and NCI-H358 epithelial cell lines and primary nasal and bronchial epithelial cells. Inhibition varied by RV species, as both minor and major group RV-A subtypes RV-B52 and RV-C2 were inhibited but not RV-C15 or RV-C41. ORMDL3 siRNA did not affect expression of the major group RV-A receptor ICAM-1 or initial internalization of RV-A16. The two major outcomes of ORMDL3 activity, SPT (serine palmitoyl-CoA transferase) inhibition and endoplasmic reticulum (ER) stress induction, were further examined: silencing ORMDL3 decreased RV-induced ER stress and IFN-ß mRNA expression. However, pharmacologic induction of ER stress and concomitant increased IFN-ß inhibited RV-A16 replication. Conversely, blockade of ER stress with tauroursodeoxycholic acid augmented replication, pointing to an alternative mechanism for the effect of ORMDL3 knockdown on RV replication. In comparison, the SPT inhibitor myriocin increased RV-A16 but not RV-C15 replication and negated the inhibitory effect of ORMDL3 knockdown. Furthermore, lipidomics analysis revealed opposing regulation of specific sphingolipid species (downstream of SPT) by myriocin and ORMDL3 siRNA, correlating with the effect of these treatments on RV replication. Together, these data revealed a requirement for ORMDL3 in supporting RV replication in epithelial cells via SPT inhibition.


Assuntos
Células Epiteliais/virologia , Proteínas de Membrana/fisiologia , Rhinovirus/fisiologia , Replicação Viral , Células A549 , Asma/etiologia , Brônquios/citologia , Células Cultivadas , Cromossomos Humanos Par 17/genética , Estresse do Retículo Endoplasmático , Ácidos Graxos Monoinsaturados/farmacologia , Predisposição Genética para Doença , Genótipo , Células HeLa , Humanos , Interferon beta/biossíntese , Interferon beta/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Mucosa Nasal/citologia , Infecções por Picornaviridae/complicações , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Rhinovirus/genética , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Replicação Viral/efeitos dos fármacos
16.
J Neurochem ; 154(6): 662-672, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32058598

RESUMO

A major dose-limiting side effect of docetaxel chemotherapy is peripheral neuropathy. Patients' symptoms include pain, numbness, tingling and burning sensations, and motor weakness in the extremities. The molecular mechanism is currently not understood, and there are no treatments available. Previously, we have shown an association between neuropathy symptoms of patients treated with paclitaxel and the plasma levels of neurotoxic sphingolipids, the 1-deoxysphingolipids (1-deoxySL) (Kramer et al, FASEB J, 2015). 1-DeoxySL are produced when the first enzyme of the sphingolipid biosynthetic pathway, serine palmitoyltransferase (SPT), uses L-alanine as a substrate instead of its canonical amino acid substrate, L-serine. In the current investigation, we tested whether 1-deoxySL accumulate in the nervous system following systemic docetaxel treatment in mice. In dorsal root ganglia (DRG), we observed that docetaxel (45 mg/kg cumulative dose) significantly elevated the levels of 1-deoxySL and L-serine-derived ceramides, but not sphingosine-1-phosphate (S1P). S1P is a bioactive sphingolipid and a ligand for specific G-protein-coupled receptors. In the sciatic nerve, docetaxel decreased 1-deoxySL and ceramides. Moreover, we show that in primary DRG cultures, 1-deoxysphingosine produced neurite swellings that could be reversed with S1P. Our results demonstrate that docetaxel chemotherapy up-regulates sphingolipid metabolism in sensory neurons, leading to the accumulation of neurotoxic 1-deoxySL. We suggest that the neurotoxic effects of 1-deoxySL on axons can be reversed with S1P.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Docetaxel/toxicidade , Síndromes Neurotóxicas/prevenção & controle , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Esfingolipídeos/toxicidade , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Ceramidas/metabolismo , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Lipídeos/farmacologia , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferase/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia
17.
Cell Physiol Biochem ; 54(1): 110-125, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31999897

RESUMO

BACKGROUND/AIMS: Cystic Fibrosis (CF) is an inherited disease associated with a variety of mutations affecting the CFTR gene. A deletion of phenylalanine 508 (F508) affects more than 70% of patients and results in unfolded proteins accumulation, originating a proteinopathy responsible for inflammation, impaired trafficking, altered metabolism, cholesterol and lipids accumulation, impaired autophagy at the cellular level. Lung inflammation has been extensively related to the accumulation of the lipotoxin ceramide. We recently proved that inhibition of ceramide synthesis by Myriocin reduces inflammation and ameliorates the defence response against pathogens infection, which is downregulated in CF. Here, we aim at demonstrating the mechanisms of Myriocin therapeutic effects in Cystic Fibrosis broncho-epithelial cells. METHODS: The effect of Myriocin treatment, on F508-CFTR bronchial epithelial cell line IB3-1 cells, was studied by evaluating the expression of key proteins and genes involved in autophagy and lipid metabolism, by western blotting and real time PCR. Moreover, the amount of glycerol-phospholipids, triglycerides, and cholesterols, sphingomyelins and ceramides were measured in treated and untreated cells by LC-MS. Finally, Sptlc1 was transiently silenced and the effect on ceramide content, autophagy and transcriptional activities was evaluated as above mentioned. RESULTS: We demonstrate that Myriocin tightly regulates metabolic function and cell resilience to stress. Myriocin moves a transcriptional program that activates TFEB, major lipid metabolism and autophagy regulator, and FOXOs, central lipid metabolism and anti-inflammatory/anti-oxidant regulators. The activity of these transcriptional factors is associated with the induction of PPARs nuclear receptors activity, whose targets are genes involved in lipid transport compartmentalization and oxidation. Transient silencing of SPTCL1 recapitulates the effects induced by Myriocin. CONCLUSION: Cystic Fibrosis bronchial epithelia accumulate lipids, exacerbating inflammation. Myriocin administration: i) activates the transcriptions of genes involved in enhancing autophagy-mediated stress clearance; ii) reduces the content of several lipid species and, at the same time, iii) enhances mitochondrial lipid oxidation. Silencing the expression of Sptlc1 reproduces Myriocin induced autophagy and transcriptional activities, demonstrating that the inhibition of sphingolipid synthesis drives a transcriptional program aimed at addressing cell metabolism towards lipid oxidation and at exploiting autophagy mediated clearance of stress. We speculate that regulating sphingolipid de novo synthesis can relieve from chronic inflammation, improving energy supply and anti-oxidant responses, indicating an innovative therapeutic strategy for CF.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Esfingolipídeos/metabolismo , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Colesterol/análise , Cromatografia Líquida de Alta Pressão , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Espectrometria de Massas , PPAR gama/genética , PPAR gama/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/análise , Esfingomielinas/análise
18.
Artigo em Inglês | MEDLINE | ID: mdl-31988047

RESUMO

Curcumin, a hydrophobic polyphenol found in the rhizome of Curcuma longa, has been shown to reduce intracellular lipid accumulation in mouse models of lysosomal storage diseases such as Niemann-Pick type C. Exosomes are small extracellular vesicles secreted by cells in response to changes in intracellular ceramide composition. Curcumin can induce exosome/microvesicle release in cellular models of lipid deposition; however, the mechanism by which curcumin stimulates this release is unknown. In a model of lipid trafficking impairment in C6 glia cells, we show that curcumin stimulated ceramide synthesis by increasing the intracellular concentration of ceramide-dihydroceramide. Ceramide overload increased exosome/microvesicle secretion 10-fold, thereby reducing the concentration of lipids in the endolysosomal compartment. These effects were blocked by inhibitors of serine palmitoyltransferase (myriocin) and ceramide synthase (fumonisin B1). It is concluded that the decrease in intracellular lipid deposition induced by curcumin is mediated by increased ceramide synthesis and exosome/microvesicle release. This action may represent an additional health benefit of curcumin.


Assuntos
Micropartículas Derivadas de Células/efeitos dos fármacos , Ceramidas/biossíntese , Curcumina/farmacologia , Exossomos/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Fumonisinas/farmacologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neuroglia/patologia , Doença de Niemann-Pick Tipo C/dietoterapia , Doença de Niemann-Pick Tipo C/patologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Ratos , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo
19.
Hum Mol Genet ; 29(2): 189-201, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31628463

RESUMO

Metabolites are small intermediate products of cellular metabolism perturbed in a variety of complex disorders. Identifying genetic markers associated with metabolite concentrations could delineate disease-related metabolic pathways in humans. We tested genetic variants for associations with 136 metabolites in 1954 Chinese from Singapore. At a conservative genome-wide threshold (3.7 × 10-10), we detected 1899 variant-metabolite associations at 16 genetic loci. Three loci (ABCA7, A4GALT, GSTM2) represented novel associations with metabolites, with the strongest association observed between ABCA7 and d18:1/24:1 dihexosylceramide. Among 13 replicated loci, we identified six new variants independent of previously reported metabolite or lipid signals. We observed variant-metabolite associations at two loci (ABCA7, CHCHD2) that have been linked to neurodegenerative diseases. At SGPP1 and SPTLC3 loci, genetic variants showed preferential selectivity for sphingolipids with d16 (rather than d18) sphingosine backbone, including sphingosine-1-phosphate (S1P). Our results provide new genetic associations for metabolites and highlight the role of metabolites as intermediate modulators in disease metabolic pathways.


Assuntos
Doença de Alzheimer/genética , Povo Asiático/genética , Glicoesfingolipídeos/metabolismo , Doença de Parkinson/genética , Esfingolipídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , China , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Glicoesfingolipídeos/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/química , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Biochem Biophys Res Commun ; 520(1): 1-7, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31554600

RESUMO

Serine palmitoyltransferase long chain-1 (SPTLC1), which is the rate-limiting enzyme for sphingolipid biosynthesis, has been indicated to be essential for carcinoma cell survival and proliferation in recent, but its role in the regulation of renal cell carcinoma (RCC) remains unknown. In the present study, we found that SPTLC1 expression was significantly decreased in RCC tissues compared to non-tumor tissues, and low SPTLC1 expression was associated with poor overall survival of RCC patients. In addition, our results revealed that forced expression of SPTLC1 could significantly inhibit cell growth in vitro and in vivo via, at least in part, modulating Akt/FOXO1 signaling pathway, thus representing a novel role of SPTLC1 in the regulation of tumor growth in RCC for the first time.


Assuntos
Carcinoma de Células Renais/metabolismo , Proteína Forkhead Box O1/metabolismo , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Animais , Carcinoma de Células Renais/patologia , Proliferação de Células , Humanos , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Serina C-Palmitoiltransferase/biossíntese , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA